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Abstract. Under some integrability conditions we derive raising and lowering differential
recurrence relations for polynomials orthogonal with respect to a weight function supported in
the real line. We also derive a second-order differential equation satisfied by these polynomials.
We discuss the Lie algebra generated by the generalized creation and annihilation operators.
From the differential equations, Plancherel–Rotach type asymptotics are derived. Under certain
conditions, stated in the text, an Airy function emerges.

1. Introduction

We first mention a physical motivation for considering the mathematical questions addressed
in this paper. Let{pn(x)}n>0 be a set of polynomials orthonormal with respect to the weight
functionw(x) defined forx ∈ R∫ ∞

−∞
pm(x)pn(x)w(x) dx = δmn. (1.1)

We also write

w(x) = e−v(x). (1.2)

In the theory ofN×N Hermitean matrix models, which has application in quantum gravity,
transport in disordered systems and quantum chaos, a fundamental quantity,E[J ], which
gives the probability that an intervalJ (a subset ofR) is free of eigenvalues is of great
interest. This quantity can be expressed as the Fredholm determinant of a certain integral
operator over the intervalJ :

E[J ] := det(I −KJ )
whereK has kernel,

KN(x, y) =
√
w(x)w(y)

pN(x)pN−1(y)− pN(y)pN−1(x)

x − y
that is

KN(x, y) =
√
w(x)w(y)

γN

γN−1

N−1∑
k=0

pk(x)pk(y)

whereγn is the coefficient ofxn in pn(x).
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In the case whereJ = (s,∞) and s is an appropriately scaled (or dimensionless)
variable,E[J ], is related to the probability of finding the largest eigenvalue ats. For the
cases of the Hermite(w(x) = e−x

2
) and the Laguerre weight(w(x) = xα e−x) functions it

was shown by Tracy and Widom [23] that the scaled kernel becomes

K(x, y) = A(x)A′(y)− A(y)A′(x)
x − y

whereA(x) is the Airy function. The Airy function arises because the Plancherel–Rotach (or
the uniform) asymptotics of the Hermite and Laguerre polynomials involve Airy functions.
For the case of the ‘Airy kernel’ the logarithm ofE[s,∞] satisfies a particular Painlevé
II transcendent [23]. It is therefore of interest to determine if the uniform asymptotics for
polynomials orthonormal with respect to

w(x) := e−v(x) v(x) = x2m + a polynomial of lower degree

gives rise to an Airy function. In this paper we give an affirmative answer to the above
question. By using a differential recurrence relation, to be shown later, from which a
second-order ordinary differential equation satisfied by the polynomials can be derived. We
will show that by transforming the ordinary differential equation into the Schrödinger form,
the one-particle potential has a linear turning point, valid for sufficiently large degree of the
polynomials and uniformly inx.

In this paper we assumev(x) of (1.2) to be twice continuously differentiable and convex
for x ∈ R. As a consequence of the orthogonality,{pn(x): n > 0} satisfies the three-term
recurrence relation,

xpn(x) =
√
βn+1pn+1(x)+ αnpn(x)+

√
βnpn−1(x) x ∈ R. (1.3)

In the notation of Nevai [17],

an =
√
βn. (1.4)

We shall use both notations throughout this work. In section 2 we derive the differential
recurrence relation

p′n(x) = −Bn(x)pn(x)+ An(x)pn−1(x) (1.5)

where

An(x) := an
∫ ∞
−∞

v′(x)− v′(y)
x − y p2

n(y)w(y) dy (1.6)

and

Bn(x) := an
∫ ∞
−∞

v′(x)− v′(y)
x − y pn(y)pn−1(y)w(y) dy. (1.7)

If v(x) is a polynomial it is clear from (1.3), (1.6) and (1.7) thatAn(x) andBn(x) are
polynomials. The differentiation formula, (1.5), is trivially,(

d

dx
+ Bn(x)

)
pn(x) = An(x)pn−1(x). (1.8)

Thus

Ln,1 :=
(

d

dx
+ Bn(x)

)
(1.9)
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is an annihilation operator. A creation operator can be found using the three-term recurrence
relation (1.3). In section 2 we shall prove that(
− d

dx
+ Bn(x)+ v′(x)

)
pn−1(x) = An−1(x)

√
βn

βn−1
pn(x) = An−1(x)

an

an−1
pn(x). (1.10)

Therefore the creation operator is

Ln,2 :=
(
− d

dx
+ Bn(x)+ v′(x)

)
. (1.11)

It is important to note that the creation and annihilation operators are adjoint when the
underlying Hilbert space has the inner product

〈f, g〉 :=
∫ ∞
−∞

f (y)g(y)w(y) dy. (1.12)

The creation and annihilation operators for the classical orthogonal polynomials are also
adjoint and it is interesting that this property continues to hold in our general setting.

In section 2 we combine (1.8) and (1.10) to derive a second-order differential equation
satisfied by{pn(x)}. The differential equation is stated as (2.6). Atkinson and Everitt [2]
revisited a method of Shohat [20] to derive a linear second-order differential equation with
polynomial coefficients satisfied by the orthogonal polynomials whenv′(x) is a rational
function. In section 2 we show that, whenv′(x) is a rational function, our differential
recurrence relations (1.8) and (1.10) will lead to a linear second-order differential equation
with polynomial coefficients, thus giving an alternative approach to Shohat’s construction
[20]. The differential equation is stated in theorem 2.2. Our construction requires the
knowledge of the recurrence coefficients{an} while Shohat’s requires the knowledge of
the Stieltjes transform ofw and the numerator polynomials. Our approach is particularly
advantageous in studying qualitative properties of the orthogonal polynomials when the
largen asymptotics ofan are known.

In section 3 we study the Lie algebra generated by the raising and lowering operators
Ln,1, Ln,2. This Lie algebra has dimension 2m + 1 whenv(x) is a polynomial of degree
2m. We determine the conditions under which this Lie algebra is finite dimensional.

It is important to note that we have essentially derived a Rodrigues formula for general
orthogonal polynomials. This is the case since (1.10) implies

Rn,2Rn−1,2 . . . R1,2[exp(−v(x))] = (−1)n
[ n∏
k=1

ak

]
exp(−v(x))pn(x) (1.13)

where

Rn,2y = an−1

An−1

[
d

dx
− Bn(x)

]
y n > 1 (1.14)

andA0(x)/a0 in (1.13) is interpreted as

A0(x)

a0
:=
∫ ∞
−∞

exp(−v(y))v
′(x)− v′(y)
x − y p2

0(y) dy (1.15)

which amount to lettingn→ 0 in An(x)/an.
Freud conjectured [17] that ifv(x) = |x|α then the recurrence coefficients have the

limiting behaviour

an =
[
n0(1+ α/2)0(α/2)

0(α + 1)

]1/α

[1+ o(1)] (1.16)



7820 Y Chen and M E H Ismail

for α > 0. This conjecture has been proved forα an even integer in [13], forv a polynomial
in [14], and forα > 0 in [12]. The corresponding conjecture for the largest zero ofpn(x)

was proved independently by Rakhmanov [19] forα > 1. For references to the extensive
literature on this problem see [9–11, 24]. In section 4 we study properties ofAn and
Bn when v(x) is a polynomial of degree 2m,m = 1, 2, . . . . In section 5 we derive a
Plancherel–Rotach asymptotic where the potentialv(x) is a polynomial of degree 2m from
the differential equation obtained in this case. The asymptotics derived are forx around
the largest zero where we show that the error term in (1.12) involves the smallest positive
zero of the Airy function,A(x). Recall that the solution to

Y ′′(x)+ x
3
Y (x) = 0 (1.17)

which is bounded atx = 0 is a constant multiple ofA(x). We have already obtained
preliminary results on the asymptotics in the rest of the complex plane, including the
oscillatory range which will appear elsewhere. In section 6 we include an intuitive though
not rigorous approach to the show how the Airy function appears. Our approach relies on
the Coulomb fluid approximation [3, 4], which goes back to Dyson [6].

2. Differential relations and equations

In this section we discuss the raising and lowering operators and the second-order differential
equation satisfied by the orthogonal polynomials.

Theorem 2.1. Let w(x) = exp(−v(x)) and v(x) be twice continuously differentiable
convex functions on(a, b) ⊂ (−∞,∞) and assume thatw has moments of all orders. Then
the polynomials{pn(x)} orthogonal with respect tow(x) on (a, b) satisfy (1.5), whereAn
andBn are given by (1.6) and (1.7), provided thatw(a+) = w(b−) = 0 and the integrals
in (1.6) and (1.7) exist.

Proof. Sincep′n(x) is a polynomial of degreen− 1, it can be expanded as

p′n(x) =
n−1∑
k=0

cn,kpk(x). (2.1)

Using the orthogonality relation (1.1) and integration by parts we see that

cn,k =
∫ ∞
−∞

p′n(y)pk(y)w(y) dy = −
∫ ∞
−∞

pn(y)[p
′
k(y)− pk(y)v′(y)]w(y) dy

hence the term involvingp′k vanishes. It follows that the right-hand side of (2.1) is∫ ∞
−∞

pn(y)

[ n−1∑
k=0

pk(x)pk(y)

]
v′(y)w(y) dy.

The above quantity vanishes ifv′(y) is replaced byv′(x), hence the right-hand side of (2.1)
is ∫ ∞

−∞

[ n−1∑
k=0

pk(x)pk(y)

]
[v′(y)− v′(x)]pn(y)w(y) dy.

Formula (1.5) now follows from the Christoffel–Darboux formula [22].
We next establish the useful formula

Bn(x)+ Bn+1(x) = x − αn
an

An(x)− v′(x). (2.2)
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To prove (2.2), use (1.7) and (1.3) to get

Bn(x)+ Bn+1(x) =
∫ ∞
−∞

pn(y)
v′(x)− v′(y)

x − y [y − αn]pn(y)w(y) dy

= x − αn
an

An(x)+
∫ ∞
−∞

[v′(y)− v′(x)]p2
n(y)w(y) dy.

The integral on the right-hand side of the above equation is∫ ∞
−∞

v′(y)p2
n(y)w(y) dy − v′(x) = −v′(x)+ 2

∫ ∞
−∞

pn(y) p
′
n(y)w(y)dy = −v′(x)

since thepns are orthonormal with respect tow. �

Remark. If w in theorem 2.1 does not vanish at the end points of the interval of
orthogonality [a, b] thenAn andBn take the form

An(x) = anw(b
−)p2

n(b
−)

b − x + anw(a
+) p2

n(a
+)

x − a + an
∫ b

a

v′(x)− v′(y)
x − y p2

n(y)w(y) dy (2.3)

Bn(x) = anw(a
+)pn(a+)pn−1(a

+)
x − a + anw(b

−)pn(b−)pn−1(b
−)

b − x
+an

∫ b

a

v′(x)− v′(y)
x − y pn(y)pn−1(y)w(y) dy. (2.4)

This is the case for example with the Laguerre polynomials wherev(x) = x, a = 0, b = ∞.
In this casepn(x) = (−1)nLn(x), henceAn(x) = n/x andBn(x) = −n/x.

Proof of (1.10). Eliminatepn−1(x) between (1.3) and (1.5) to get(
Bn(x)+ d

dx

)
pn(x) = An(x)

an
[(x − αn)pn(x)− an+1pn+1(x)]. (2.5)

Use (2.2) to rewrite the above equation in the form (1.10). �

Theorem 2.2. Under the assumptions in theorem 2.1 thepns satisfy the factored equation

L2,n

(
1

An(x)
(L1,npn(x))

)
= an

an−1
An−1(x)pn(x). (2.6)

Equivalently (2.6) is

p′′n(x)+ P(x)p′n(x)+Q(x)pn(x) = 0 (2.7)

where

P(x) := −
[
v′(x)+ A

′
n(x)

An(x)

]
(2.8)

Q(x) := An(x)
(
Bn(x)

An(x)

)′
− Bn(x)[v′(x)+ Bn(x)] + An(x)An−1(x)

an

an−1

= B ′n(x)− Bn(x)
A′n(x)
An(x)

− Bn(x)[v′(x)+ Bn(x)] + an

an−1
An(x)An−1(x). (2.9)

The Schr̈odinger form of (2.5) is

9 ′′n (x)+ V (x; n)9n(x) = 0 (2.10)



7822 Y Chen and M E H Ismail

where

9n(x) := exp[−v(x)/2]√
An(x)

pn(x) (2.11)

and

V (x, n) = An(x)
(
Bn(x)

An(x)

)′
− Bn(x)[v′(x)+ Bn(x)] + An(x)An−1(x)

an

an−1
+ v

′′(x)
2

+1

2

(
A′n(x)
An(x)

)′
− 1

4

[
v′(x)+ A

′
n(x)

An(x)

]2

. (2.12)

Observe thatAn(x) > 0 due to the convexity ofv(x).

Theorem 2.3. If v(x) is a polynomial of degreem thenAn(x), Bn(x), An(x)P (x) and
An(x)Q(x) are polynomials of degreesm− 2, m− 3, 2m− 3, and 3m− 6, respectively.

Proof. Let v′(x) = cxm−1+ lower order terms. Clearly (1.6) and (1.7) imply

An(x)/c = anxm−2+ lower order terms

Bn(x)/c = a2
nx

m−3+ lower order terms.

It is now evident from (2.6) that the degree ofAn(x)P (x) is 2m− 3. Furthermore

An(x)Q(x) := An(x)B ′n(x)− Bn(x)A′n(x)− An(x)Bn(x)[v′(x)+ Bn(x)]
+ an

an−1
An(x)An−1(x)

implies thatAn(x)Q(x) is of degree 3m− 6. This completes the proof. �

Theorem 2.4. If v(x) is a rational function, say

v′(x) = p(x)+ r(x)/s(x) (2.13)

wherep(x), r(x) and s(x) are polynomials of degreesp, r and s, respectively, then the
orthogonal polynomials satisfy a linear second-order differential equation with polynomials
coefficients.

Proof. It is clear thatp(x) in (2.12) contributes toAn(x) andBn(x) polynomials of degree
p− 1 andp− 2, respectively. It is clear that if for a fixed positive integerk, the moments
of w(y)(y + c)−k of all orders exist then

(x + c)k
∫ ∞
−∞

w(y)

x − y [(x + c)−k − (y + c)−k]pn(y)pn−j (y) dy

is a polynomial of degreek − 1 whenj = 0 and of degree at mostk − 2 if j = 1. Thus
An(x) is the sum of polynomial of degreep− 1 and a rational function whileBn(x) is the
sum of polynomial of degreep − 1 and a rational function. �
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3. Lie algebras generated by ladder operators

We first study the Lie algebra generated byLn,1 andLn,2 whenv′(x) andBn(x) are analytic
functions in a domain containing the support ofw(x). Since

exp(−v(x)/2)Ln,1(y exp(v(x)/2)) =
(

d

dx
+ Bn(x)+ 1

2
v′(x)

)
y

exp(−v(x)/2)Ln,2(y exp(v(x)/2)) =
(
− d

dx
+ Bn(x)+ 1

2
v′(x)

)
y

then{Ln,1, Ln,2} are equivalent to{Mn,1,Mn,2},

Mn,1 := d

dx
Mn,2y :=

[
Bn(x)+ 1

2
v′(x)

]
y. (3.1)

Set

f1(x) := Bn(x)+ 1

2
v′(x) fj+1(x) = dfj (x)

dx
j > 0. (3.2)

Let

Mn,jy = fj (x)y j = 2, 3, . . . . (3.3)

It is easy to see that the Lie algebra generated by{Mn,1,Mn,2} consists of{d/dx, fj (x): j =
1, 2, . . .}. TheM ’s satisfy the commutation relations

[Mn,1,Mn,j ] = Mn,j+1, j > 1 [Mn,j ,Mn,k] = 0 j, k > 1. (3.4)

Theorem 3.1. The Lie algebra generated byLn,1 andLn,2 has dimension 2m + 1 when
v(x) is a polynomial of degree 2m for all n, n > 0.

Proof. Clearly the coefficient ofx2m in v(x) must be positive and may be taken as one.
HenceBn(x) is a polynomial of degree 2m−3 with leading term 2ma2

nx
2m−3, sof1(x) has

precise degree 2m−1. Thereforefj (x) is a polynomial of degree 2m−j , j = 1, 2, . . . ,2m
and the theorem follows. �

The application of a theorem by Miller [16, ch 8], also stated as theorem 1 in [8], leads
to the following result.

Theorem 3.2. Let f1 be analytic in a domain containing(−∞,∞). Then the Lie algebra
generated byMn,1 andMn,2 is finite dimensional, sayk + 2, if and only if f1 and its first
k derivatives form a basis of solutions to

k∑
j=0

ajy
(j) = 0 (3.5)

wherea0, . . . , ak are constants which may depend onn, andak 6= 0.

This algebra has a very simple structure since all its elements, except for d/dx commute.
Any non-Abelian sub-algebras must contain d/dx.



7824 Y Chen and M E H Ismail

4. Polynomials with exponential weights

In this section we investigate the asymptotics ofAn(x) andBn(x) for largen.

Theorem 4.1. (Magnus [14].) Let{pn(x)} be orthonormal with respect to exp(−v(x)) on
(−∞,∞) wherev(x)−x2m is a polynomial of degree at most 2m−1,m = 1, 2, . . . . Then
the recurrence coefficients satisfy

an =
[
m!(m− 1)!

(2m)!
n

]1/(2m)

[1+ o(1)]. (4.1)

Theorem 4.2. Let {pn(x)} be orthonormal with respect to an even weight functionw(x)
and set

x2l pn(x) =
2l∑
j=0

cn,l,j pn+2j−2l(x). (4.2)

Then cn,l,j is a homogeneous polynomial of degree 2l in an−2l+1, an−2l+2, . . . , an+2l

containing
(2l
j

)
non-zero terms, counting repetitions.

Proof. Use induction, (1.3) and (1.4).
It is clear that (4.2) implies

x2l+1pn(x) =
2l∑
j=0

cn,l,j [an+2j−2l+1pn+2j−2l+1(x)+ an+2j−2lpn+2j−2l−1(x)]. (4.3)

�

Theorem 4.3. Let v be an even polynomial,

v(x) =
m∑
k=0

vkx
2k vm = 1. (4.4)

Then asn→∞ we have

An(x) = 2an
m−1∑
k=0

k∑
l=0

(k + 1)vk+1x
2k−2la2l

n

(
2l

l

)
[1+ o(1)] (4.5)

Bn(x) = 2a2
n

m−1∑
k=0

k∑
l=0

(k + 1)vk+1x
2k−2l−1a2l

n

(
2l + 1

l

)
[1+ o(1)]. (4.6)

Proof. It is clear from theorems 4.1 and 4.2 that asn→∞,

cn,j,l = a2l

(
2l

j

)
[1+ o(1)]. (4.7)

Therefore

An(x) = an
m∑
k=1

2kvk
k−1∑
l=0

x2k−2l−2
∫ ∞
−∞

y2lp2
n(y)w(y) dy

= 2an
m∑
k=1

kvk

k−1∑
l=0

x2k−2l−2cn,l,l [1+ o(1)].

The corresponding result forBn follows similarly from (1.7) and (4.3). �
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5. Plancherel–Rotach asymptotics

In this section we establish the Plancherel–Rotach asymptotics for Freud polynomials
associated with the weights exp(−v(x)) for even polynomialsv(x) of degree 2m with
leading termx2m. In our proof of the next result we shall use the Chu–Vandermonde sum
[7]

2F1(−n, a; c; 1) = (c − a)n
(c)n

. (5.1)

This is the terminating version of Gauss’s theorem. A special case of (5.1) is
m−1∑
l=0

(
2l

l

)
2−2l =

m−1∑
l=0

(1/2)l
l!
= lim

ε→0
2F1(1−m, 1/2; 1−m+ ε; 1) = (3/2)m−1

(m− 1)!
. (5.2)

Theorem 5.1. Let v(x) be as in (4.4) and set

hn(x) := An(x)An−1(x)− B2
n(x)− Bn(x) v′(x)+

An(x)

2an
− v

′2(x)
4

(5.3)

Xn :=
√

4a2
n + 2an/An(2an). (5.4)

Then

An(2an) = m(2an)2m−1 (3/2)m−1

(m− 1)!
[1+ o(1)] = a2m−1

n (2m)!

(m− 1)!2
[1+ o(1)] (5.5)

hn(Xn) = O(a−2
n )+ o(An(Xn)). (5.6)

Proof. From (4.5) it follows that

An(2an) = m(2an)2m−1
m−1∑
l=0

(
2l

l

)
2−2l

and (5.5) follows from (5.2) and (4.5). Next for sufficiently largen, An+1(2an)/An(2an)→
1, so

hn(x) = A2
n(x)− [Bn + v′(x)/2]2+ An(x)/(2an)+ o(An(x)+ Bn(x))

for x sufficiently close to 2an andn large. Using (2.2) we get, forx as before,

hn(x) = A2
n(x)

[
1/2

anAn(x)
+ 1− x2

4a2
n

]
+ o(An(x)+ Bn(x)). (5.7)

Therefore

hn(Xn) [1+ o(1)] = [An(Xn)− An(2an)]/(2an).
The above equation, the observationBn(x) = O(An(x)) and (4.5) imply (5.6) and the proof
is complete. �

We now discuss the largen behaviour ofV (x; n). Recall that asn→∞, bothan/an−1

andBn(x)/Bn−1(x) tend to 1. Thus (2.2) implies

An(x)

(
Bn(x)

An(x)

)′
[1+ o(1)] = An(x)

2an
− v

′′(x)
2
+ v

′(x)
2

[
A′n(x)
An(x)

]
and

Bn(x)[v
′(x)+ Bn(x)][1 + o(1)] =

(
x

2an
An(x)

)2

− [v′(x)]2

4
.
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Therefore

V (x; n)[1+ o(1)] = A2
n(x)

[
1− x2

4a2
n

]
+ An(x)

2an
+ 1

2

(
A′n(x)
An(x)

)′
− 1

4

(
A′n(x)
An(x)

)2

. (5.8)

Every turning point of the differential equation (2.10) separates intervals of oscillation from
non-oscillatory intervals. Since the zeros of the polynomials are real, simple and dense in
(−∞,∞) it then follows that the differential equation (2.10) has only two turning points at
the largest and smallest zeros ofpn(x). It is obvious from (5.8) that the dominant terms in
V (x; n) come fromhn(x). Therefore the turning points are approximatelyx = ±Xn, with
Xn as defined in (5.4). We point out that the approximation of the largest zero ofpn by
Xn of (5.4) is quite sharp. For example for the Hermite polynomialsv(x) = x2, Bn(x) = 0
andAn(x) = 2an and we findXn =

√
2n+ 1, which is the precise approximation given in

Szeg̈o [22]. The procedure given in Nevai’s survey article [17] forv(x) = x4 andv(x) = x6

is not as sharp. For example in the case of Hermite polynomials it gives the approximation√
2n for largest zeros ofHn(x), as was pointed out by Nevai [17, (4.21.59)].

Theorem 5.2. Let the zeros ofpn(x) be

xn,1 > xn,2 > · · · . (5.9)

Then

xn,k = Xn − ik
(

2an
6A2

n(2an)

)1/3

(5.10)

whereik is thekth positive zero of the Airy function [22].

This proves a conjecture in [5] that

xn,1 = Xn − i1
(

2an
6A2

n(2an)

)1/3

. (5.11)

Note thatAn(2an) is given by (5.5). In the case of Hermite polynomialsan =
√
n/2,

An(x) = 2an and (5.10) reduces to the well known asymptotics in [22].

Proof of theorem 5.2. In the differential equation

y ′′ + V (x; n)y = 0 (5.12)

let x = Xn − ξ . ClearlyBn(x) = O(An(x)) and

hn(x) = A2
n(x)

[
X2
n − x2

4a2
n

]
+ A(x)− A(Xn)

2an
+ o(An(x))

= (Xn − x)
[
A2
n(x)

Xn + x
4a2

n

+ A(x)− A(Xn)
2an(Xn − x)

]
+ o(An(x)) (5.13)

hold when n is large but ξ lies in a compact set. On the other hand (5.8) implies
V (x; n) = hn(x)+O(x−2) asx →∞. Therefore (5.12) becomes

d2y

dξ2
+ y[ξA2

n(2an)/an] = [o(An(2an))]y.

After we replaceξ by ζ(3an/A2
n(2an) we transform the above differential equation to

d2y

dζ 2
+ (ζ/3)y = [o(an/An(2an))]y = [o(a2−2m

n )]y. (5.14)

The next step is to apply perturbation theory to (5.14) using the Airy equation (1.17) as the
model equation. After straightforward calculations we establish (5.10) fork = 1 and the
general case will appear elsewhere. �
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6. Asymptotics near the edges

This section contains a plausible and physical explanation for the appearance of the
Airy function and its zeros in the asymptotics of polynomials orthogonal with respect to
exponential weights.

Recall that we assumed thatv(x) is twice differentiable and convex. Furthermore, we
shall require that the associated moment problem is determinate. It appears that things are
not quite clear in the indeterminate cases. For terminology and the literature on the moment
problem we refer the interested reader to the books by Akhiezer [1] and Shohat and Tamarkin
[21]. First we expect thatBn(x) for sufficiently largen is a slowly varying function ofn
andBn(x) ≈ Bn+1(x). Clearly a rigorous estimate, uniform inx, of |Bn+1(x) − Bn(x)| is
highly desirable. Second,An(x) is also expected to be a slowly varying function ofn and
An(x) ≈ An−1(x). However, note that as the polynomials are rapidly varying functions of
n, we do not have the approximation,pn(x) ≈ pn±1(x). Third, an ≈ an−1 which is clear
from [12]. Now using these observations we find

Bn(x) ≈ x − αn
2
√
αn
An(x)− v

′

2
. (6.1)

Now a simple computation using the above approximation shows,

An(x)

(
Bn(x)

An(x)

)′
≈ An(x)

2
√
βn
− v

′′(x)
2
+ v

′(x)
2

[
A′n(x)
An(x)

]
. (6.2)

Also

Bn(x)(v
′(x)+ Bn(x)) ≈

(
x − αn
2
√
βn
An(x)

)2

− [v′(x)]2

4
. (6.3)

Finally, putting all the pieces together we see from (2.12) that

V (x; n) ≈ A2
n(x)

[
1−

(
x − αn
2
√
βn

)2 ]
+ An(x)

2
√
βn
+ 1

2

(
A′n(x)
An(x)

)′
− 1

4

(
A′n(x)
An(x)

)2

. (6.4)

Now we need to relateAn(x) to the Coulomb fluid density,σ(x). It was shown in [4] that

An(x) ≈ 2π
√
βn

σ(x)√
(b − x)(x − a) = 2πan

σ(x)√
(b − x)(x − a) . (6.5)

From these we find,

V (x; n) ≈ πσ(x)√
(b − x)(x − a) + π

2σ 2(x)+ 1

2

(
A′n(x)
An(x)

)′
− 1

4

(
A′n(x)
An(x)

)2

. (6.6)

Now under the assumptions onv(x), we find in the Coulomb fluid approximation

σ(x) ≈ G(a, b)√b − x asx → b (6.7)

whereG(a, b) has an integral representation and can be shown to positive due to the
convexity ofv(x). See [4] regarding the integral representation and positivity ofG(a, b).
Thus

V (x; n) ≈ πG(a, b)√
b − a + π

2G2(a, b)(b − x) (6.8)

asx → b and the differential equation (2.10) becomes

9 ′′n (x)+
[
πG(a, b)√
b − a + π

2G2(a, b)(b − x)
]
9n(x) = o(9n(x)). (6.9)
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At this stage we make the change of variable

t :=
(

3/π

G(a, b)

)1/3 [ 1√
b − a + πG(a, b)(b − x)

]
(6.10)

then
d29n(t)

dt2
+ t

3
9n(t) = o(9n(t)). (6.11)

Therefore one would expect9n as a function oft to have the property

lim
n→∞9n(t)/Cn = A(t) (6.12)

for some numerical sequenceCn and the limit holds uniformly on compact subsets of the
complext-plane. The turning point of (6.9) nearx = b is

Xn(b) := b + (b − a)
−1/2

πG(a, b)
. (6.13)

This suggests that the zeros ofpn(x), arranged as in theorem 5.2, have the limiting behaviour

xn,k = Xn(b)− ik

31/3
(π G(a, b))−2/3[1+ o(1)]. (6.14)

As an example consider the Freud weightw(x) = exp(−|x|α). Herev(x) = |x|α and
a = −b. For α > 2, v is convex. It is known that in this case

πG(−b, b) = 2+α−3/20(α + 1)

02(α/2)
bα−3/2 (6.15)

see for example [3]. Furthermore

bα = 02(α/2) 2α−1n

0(α)
[1+ o(1)] (6.16)

[12, 19]. In view of (6.13) we take

Xn(b) = b + 02(α/2)√
2b0(α + 1)

[
2

b

]α−3/2

. (6.17)

Now (6.14) becomes

Xn(b) = b
[

1+ 1

2αn

]
. (6.18)

This suggests

xn,k = b
[

1+ 1

2αn

]
− ik

31/3

(
2

α

)2/3(
02(α/2)

20(α)

)1/α

n1/α− 2
3 [1+ εn] (6.19)

whereb is given by (6.16) andεn→ 0 asn→∞. We believeεn to be positive. In the case
of Hermite polynomialsα = 2 and (6.18) reduces to what one gets from theorem 8.22.9 in
Szeg̈o [22]. Szeg̈o shows thatεn > 0 for the Hermite polynomials.
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Note added in proof. It has come to our attention that the differential equations established here have been
established for polynomialv by Bonan and Clark (Bonan S S and Clark D S 1990J. Approx. Theory63 210)
and by Bauldrey (Bauldrey N C 1990J. Approx. Theory63 225) where they were used to establish bounds from
Freud polynomials. Neither Bauldrey nor Bonan and Clark identified the creation operators, Lie algebras, nor did
they study the connection with the zero of the Airy function.
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